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1. Introduction

In recent years the propagation of high frequency radio waves
through the ionosphere has formed the basis of a number of experi-
mental techniques for the study of the ionosphere. By measuring the
resultant properties of the received signals from, for example, lunar
reflections of radar pulses, or from rocket or satellite beacon trans-
mitters, it has been possible to deduce many properties of the
ionospheric medium, including that part above the level of maximum
ionization density which had not previously been readily accessible
to radio wave probing.

Consideration will here be limited to waves much higher than
both the plasma frequency and the electron gyro-frequency, and on
which, therefore, the effect of the medium is relatively small. For
such waves the effect of the ionospheric medium is largely one of
refraction and birefringence and attention is directed to the resulting
phase and polarization rotation effects produced in the waves.

Both these effects are cumulative over the propagation path
and their measurement leads quite directly to an approximate
measure of the total quantity of ionization along the propagation path.

If the usual "high-frequency approximation' is made that all
rays may be considered to travel the same straight line path from
source to receiver, then the relative refractive index may be written

approximately

where X =




e B

vy, o= —L
2mmf
N = the electron density
e = the electronic charge
e, * the electrical permittivity of free space
m = the electronic mass
f = the wave frequency
BL. = 11:111§ecomponent of the magnetic field along the straight

Then to a first order the polarization rotation QO may be found by
integrating the differential refractive index between the two magneto-

ionic modes along the straight line, giving

h
oy ] .
520 = X J YL secB dh radians
o
T @ oe— .
=< YL secH j X dh (1)

where \ 1is the free space wavelength
6 is the zenith angle at height h

YL secO 1is the weighted mean value of YL secb along the
straight line.

and X dh is proportional to the integrated vertical column of
electrons over the height range of the measurement.

Similarly the reduction. APO in the phase path relative to that

of a free space medium is given by

AP =1

0-73 secH Sth (2)

where sec® is the weighted mean value of sec®.




The assumption of straight line propagation is equivalent to the medium
being of uniform ionization density over the entire propagation path and
having a uniform magnetic field. In addition, the linear dependence of
the wave perturbations on the electron integral is based on the
assumption that the refractive indices for the modes considered are
linear in electron density, a condition which is approached asymptotically
at high frequencies.

It is the purpose of this paper to relax the above simplifying
approximations and to develop propagation equations which will
describe these effects to a higher order of accuracy in a form suitable
for manual data reduction.

The ways in which propagation through the ionosphere departs
from the description of first order theory have been considered
previously by a number of workers. Their inclusion in the analysis
of data has, however, been done’ fully only through the use of digital
computing programs which seek solutions to the propagation equations
in terms of ionospheric models whose parameters are adjusted
numerically to optimize the fit to the data, e.g., Garriott (1960),

Lawrence and Posakony (1961).




2. Second-Order Effects

The departures from the straight line approximation for waves
propagating through the ionosphere may be listed as follows:

(1) The non-uniform distribution of ionization causes the
various rays to be refracted and follow different paths between source
and receiver.

(2) Since the medium is anisotropic the wavenormal and ray for
a particular mode of propagation are not coincident in direction.

(3) The refractive index is non-linear in electron density and
magnetic field intensity.

It would be most realistic to formulate the propagation equations
in terms of a spherically stratified ionosphere model, with a magnetic
field of approximately dipole form. However, the complexity of this
system for purposes of analysis is very great, and we have here
resorted to a more approximate model, in order to make the analysis
more tractable. We shall replace the spherically stratified model by
a plane stratified model in which the originally spherical ionization
contours are replaced by a set of parallel plane contours tangent to
the former at the point where the straight line path intersects some
central height of the ionization distribution. For convenience, we shall
assume that this point is the same as that at which the mean longitudinal
field component is evaluated for the first order theory in Equation (1).
In addition, the non-uniform magnetic field is replaced by a uniform
field having the magnitude and direction of the original field at the
same "ionospheric point"'.

The most important simplification resulting from this model is




that the wavenormal associated with the ray in any uniform lamination
of the medium does not change its direction relative to the plane of
stratification as a result of ray-wavenormal angular separation, and
therefore it is possible to calculate the refraction of the wavenormal
in terms of a simple Snell's Law expression. The methods of ray-
optics will be used throughout.

We shall seek solutions to the ray paths through this model
and consider that the perturbations to the first order theory which are
found are a close approximation to the perturbations which would be
present in the more sophisticated model.

Since it is often convenient, or even necessary, to compute
magnetic field maps in a form which may be used to reduce all data,
these computations must be made with respect to some known frame
of reference, most conveniently taken to be the straight line joining
source and receiver which is used for first order theory computations.
We shall therefore refer all directions and quantities to this straight

line.
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3. The Propagation Equations

We shall assume the relative wave refractive index y of the
medium to be purely real and given by the collision-free, quasi-

longitudinal form of the Appleton-Hartree equation

2 . X
wooT - > )
1 ®@Ycosy-Y sin” Y/2 (1 -X)

(3)

where Y is the angle between the field and the wavenormal.
We shall denote the direction of the ray associated with a wavenormal
unit vector w by a unit vector r .
Then, through the anisotropic optics which apply in this situation,
e.g. Budden (1961), the vectors w, r and B are coplanar, with r
.1 9y .
rotated from w toward B by an angle whose tangent is R Denoting

this ray-wavenormal separation angle by @, we may write alternatively

1 8,8
tan ¢ = —> 5—%—
2y
XY sin Y [1 £ Y cos U/(1 -X)]
=T 2 Z r @
2u“[1 2 Ycos - Y sin /2 (1 - X)]
Thus we may write r =[1v + mY (5)
where

m = Y sin ¢ (6)

and

/ = sin (Y - @) (7)

= cos o - cot Y sin «




Now establish a rectangular Cartesian coordinate system at the "ionospheric
point' on the straight line from source to receiver, with the z-direction
vertically upwards and the x-direction horizontal in the vertical plane of
the straight line. In this frame the wavenormal associated with a given
ray will have a constant azimuthal direction (1)0.
Denote the azimuthal angle for the ray by ¢.
Denote the zenith angle of the wavenormal by i, of the ray by x , and of
the straight line path by ©. The geometry of this system is shown
schematically in Figure 1. Then the refraction of the wavenormal may
be calculated from Snell's Law
psini = sin io (8)

where io is the angle of incidence of the wavenormal (and of the ray)
at the receiver end of the propagation path, at which the ionization
density is assumed to be zero.

The phase path length P of the ray from source to receiver is

then found by integrating the ray velocity along the ray path.

el
H
i

P = ‘) M cosa secy dz (9)
h
The constraint that the ray should have end points at source and receiver

may be expressed by the two integral equations

S‘ r secx dz = htan 6 (10)
h
and

§ rY secx dz = 0 (11)
h
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where each of the integrals in Equations (9), (10) and (11) is taken over
h, the vertical separation of source and receiver.

The desired solution of the above set of Equations (3) - (11) is
to express P in terms of the known quantities 8, h, X and Y. An exact
solution is not readily arrived at, due largely to the two integral
equations of the set, and it is necessary to approximate the problem
further. We shall expand all equations as polynomial series in X and
Y (or its components) and shall seek a solution by retaining all terms
up to order three in these quantities. It should be noted that the first
order polarization rotation equation (Equation (1) ) is of order two so
that the above procedure should add an additional level of accuracy

to the result.
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4. Solution of the Equations
We see from Equation (4) that « is of order two in its leading

*
tan ¢ = sin o.

term, and therefore we may write o =
cos a = 1
L[]

Also since the angles ¢ and ¢ arise directly from the azimuthal
g o y

components of «, similar approximations apply to their trigonometric

functions.
In order to abbreviate the equations we shall write
pz = 1-A
where
A = =
1 £Y cos ¥ - Y sin $/2 (1 -X)
= X[1FY cos LIJ+.Y2 cosz¢+—;—Y2 sinztp] (12)
Thus A is of order unity in its leading term.
. 2.
sin’i
Then sin i =
1 -A
= sinzio [1+ A+ A% 4+ A3]
(13)

2 + A3)]

coszi cosziO (1 - tanziO (A + A

From Equation (5)

cosx =r, = dcosi+ mY

= cosi [ 1+ B]
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where

.

Y
B = SiC:lLIJ [ ; seci - cosy | (15)

Thus B is of order two in its leading term.

Then coszx = cos2 i [1+2B]

coszl [l—AtanZi —Aztanzi —A3tan2i
o o o o

1

+ 2B = 2AB tan” io]

Inverting

seczx = sec2 i [1+A tan2 i+ A tan2 i sec2 i+ Al tan2 i sec i - 2B]
o ) o o o o

H

o tanzx = seczx -1

tanzi :[1+Aseczi +Azsec4i +A3secéi
o o o o

- 2B cosec2 io ]

Taking the square roeot of both sides gives

: . 1 2 . 3 . . 2 .
tan)(-,-1:an1o [1+-2-Asec 10+§A sec 10+T6-A sec 10—Bcosec i

1

2. 2.
+ > ABsec”i_cosec 10] (16)

The conktraint of Equation (10) can be written

htan ©

S tan x cos ¢ dz
h

sli»

S‘ tan x dz (17)
h
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Therefore integrating both sides of Eguation (16) over the height range

h gives
_ . R 2. 3 2 4, 5 3 6 .
tane—tanlo [l+§ A sec lo+8 sec lo+R_A sec” i
- B coseczi + 1 AB seczi coseczi ] (18)
o 2 o o

where the bars denote height averages over the range of integration.

Inverting (18)

tani = tan 9 [1 L A seczi _3 Azsec4i -2 A3sec6i
o 2 o 8 o 16 o
- — 1 -
+ B cosec i - —Z—AB sec 1 cosec 1 + I A" sec i

Equation (19) forms the basis of calculating trigonometric
functions of the angle io in terms of O, to any desired order of accuracy
up to three, by iteration. Since these functions will most often be used
in squared form it is convenient to square Equation (19) before evaluating

the functions of io

2 4 —-5—A3sec61 +2§coseczi
o 8 o o)

NS
>
w
o
0
[

tanZi =tan26[1-K seczi -
o o
- AB seczi coseczi +2KZ sec4i +27XA sec i

o o 4 o 8

- 3A B sec2 i coseczi - KB’ sec6 i] (20)
o o o
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To order zero

’can2 io = tan2 6 (21)
To order unity
tan® i, = tan” 6 [1 -A sec? 0] (22a)
oo secz i = sec? 0 [1-Z& tan® 8] (22b)
sect i o= sec? @ [1-2A tan® ] (22¢)
2 . 2 —
cosec” i = cosec 6[1+ A ] (22d)

To order two

ta.n‘2 io = ta.n2 61 -A secz 0+ ./_XZ tan2 6 sec2 8 + 2B cosec:2 0

+ % (B - A%) sect 0] (23a)
. sec2i0=sec26[l—z tan26+K2tan49+2§
+ :31- (7&2 - Az) ta,n2 0 sec2 9 ] (23b)

To order three

r
ta‘.nZ io ’can2 61 -Ksec2 G‘tl -—Atan2 0 + 7&2 tan4 6 + 2B

N
AN

+ (.7\2- AZ) ta.n2 0 sec2 <] }+ (Kz- Az) sec4 4] ( 1 - ZKtan2 6)

A3 sen::6 6+ 2B cosec2 6 (1+2A)-2AB sec2 ) cosec2 e

t
oo

A® sec6 0-3% B sec’ Ocosec2 ) -% i3 sec6 0]

+
o0}
>l

(24a)
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- 2 2 4

sec i =secze[l—Ktan29{l—Atan 6+ A" tan 6 + 2B

(KZ— AZ) 1:an2 0 sec2 9}+ % (Kz— Az) tan2 e sec2 6 (1 - Zztan2 0)

B w

A sec46tan26+ 2B (1 + A) - AB sec29+%7§22-sec49tan29

]
o]
W

<3 2

B sec” 6 - A sec46tan 0] (24b)

!
w
S

We now have the means of evaluating the integrand of Equation (9)

-lie

-
[0)
(0]
(@]

>

2 2
B sec X cos «

(1 - A sec2 io[l + A tan2 io + A2 tan2 io sec2 i

o

+ A3 'can2 i sec4i - 2B]
o o

=seczi [1—A+Atan2i +A2tan4i +A3tan4i seczi
o) o o) o o

- 2B + 2AB] (25)

It is now a straight forward though lengthy procedure to substitute in
Equation (25) for the functions of io from the appropriate set (21) through
(25) and to insert appropriate expressions for A and B evaluated in
terms of © also.

From Equation (12)

A =X [1F Ycos §+ Yzcosz¢+%stin2¢]

But Y cos ¢

Y sinicos¢ + Y sinisin¢ + Y_cosi
x o y o z
 Y_sini+ Y cosi
X z

(X -X) Y, tan © (26)

and Ysinzkbj—:Y-Y




- 15 -

Where YL is the component of Y along the straight line path, measured

positively upwards,

and Y1 is the component of Y perpendicular to the straight line path,

in the plane of incidence, and measured positively upwards.

. _ 1 - L1 2 1 2
LA = X[IZFYLd:-Z-,(X-X)Yltan b+ 5> Y, " +5 Y ] (27)
From Equations (15) and (4)
X (Y seci- Y cos ¢)
B = F z
. 2 {1 —}Q(IQYL)

which reduces to

1 1 = 2 Yy,
B = F xXY,tan0[14+XFY, +5 (X -X)(sec” 8+ — tan 0)]

2 1 L 2 Y1

(28)

We shall not attempt to evaluate the phase path integral of Equation (9)
to order three by this direct approach, but shall consider separately

the cases relevant to the two phenomena of interest, namely polarization
rotation and phase path dispersion, for which more straightforward but
less direct methods will be used. Before proceeding, however, it is

of interest to note certain properties of the equations.

(1) In the final equations above, the component of Y normal to the plane
of incidence appears only once, in the final term of Equation (27), and in
the same form for each magnetoionic mode. Its only effect is to modify
the effective value of X slightly in all the refraction effects evaluated to
order three, It is therefore evident that the effects of refraction out of
the.plane of incidence are at most very minor in importance, and will be

seen later to be negligible to this order of accuracy.




- 16 -

(2) All angle functions appearing in the expression for wave refractive
index are multiplied by coefficients of order two or greater, and therefore
the angles need only be evaluated to order unity, i.e., to the accuracy of
the no-field ray, in order to compute the refractive indices. However,
the ray direction still needs to be evaluated to order three in order to

. find the path length to this accuracy.

4.1 Polarization Rotation

For the consideration of second-order effects in the polarization
rotation of a wave propagating through the ionosphere, the quantity of
interest is the phase path difference between the two circularly polarized
magneto-ionic modes which are represented in the equations by the
alternate signs. Denoting the difference between these modes by the

operator = A,we note

2 2
A(p” sec” x) (29)
By 8€c X, + by S€C X,

A(p sec x) =

and since the numerator of this expression is of order two in its leading
term, the denominator need be evaluated to terms of order unity only.

FromEquation (25)

A(p2 sec2 X) = A(sec2 io) - A(A sec2 io) + A(A tan2 io sec2 io)

4 4 .

+ A(A2 tan i sec2 i)+ A(A3 ’can4 i sec i ) - 2A(B sec2 i)
o) o . o o o

+ 2A(AB sec2 io)

On substituting for io to the appropriate degree of accuracy and evaluating
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these terms, and noting that the difference operation on any triple product

of A and A is identically zero, we find

sec:2 e[-A(A) + tan2 0A(A -A)+ tan4 0 A(A - K)Z

A(pz secZ X )

3 tan @ sec2 0 A(AZ - KZ) - 2A(B - B)

4
+ A(AB -A B) + A(AB - AB) + tan® 0 A(AB - AB)
+ 5 tan® 0 A(AB - A B) ] (30)

From Equations (27) and (28)

A(A) = -2XY; + X(X-X) Y, tan 6
2y _ 2
AAT) = - 4XTY
1 < 2 Yo
A(B) = - XY, tan 0 [1 + X + > (X - X)(sec” 8 + < tan 0)]
1
A(AB) = - X%Y. tan ©

1

with similar expressions for barred and partially barred arguments.

Substituting intoEquation (30) gives
2 2 2 = - 2
A(p” sec” x ) = sec 6 [ZXYL - XYl(X -X)tan 6 - ZYL (X - X)tan ©

3

39-)_(Y1 (X -X)tan~ 0

+ Y1 (X2 - XZ) tan

+ 2Y (X -R)tan 0+ 2Y (X% - %x%) tan 0

— Y
+ Y (X2 - XZ) tan 6 (sec2 6 + - tan 0O)
1 Y1
< < 2 YL =, 2 4
- Y X (X - XHsec” 6+ s—tan 9) - 4Y. (X - X)" tan” 6
1 Yl L
<2 3

+3Y 2 _ %) tan® 8 sec’ 0 -2}—(2Yltan6+ z‘szltan 0
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+ 3)_§2Yltanesec29— 6 XX YltanBG

_ 2 x2 Y, tan 6 + x? Y, tan 6 sec® 0 ] (31)

Now

1 _ 1 1 1 .. 2
M., s€C X +‘J’ sec X - 'Z'COS 6[1+7X—2-(X —X)tan e]
1 1 2 2
(32)
On substituting Equations (31) and (32) into Equation (29), averaging over

the height range of integration and simplifying

Y

Alisec x) = X ¥ seco[l+2 B% +%(B—l))_(tan6(tan9—Y—i)]
o 1 < 1
-XYLsec9[1+2-BX+E(B—l)G_X] (33)

where B_)—(Z = XZ (34)

Y
and G = tan 0 (tan 6 - N ) (35)
L

Since the factor outside the bracket in Equation (33) is the result
of first order straight line theory, we may write the polarization rotation
angle, Q, as determined by second-otder theory, in terms of the rotation

angle QO given by first-order theory as

Q

Qo[1+%s‘3‘<+%(5_1)cz‘<] (36)
where

o
QO = 5 h X Y, sec ) (37)

4.2 Phase Path Dispersion

The first order analysis of phase path reduction by refraction

(Equation (2))shows that the :result is of order unity in the leading
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term. To extend the accuracy of the result one additional order, it is

necessary to evaluate Equation (9) to order two only. From Equation (25)

the square of the integrand of Equation (9) can be written to this order as

2

o secz )(cos2 a = seczio[l-A+Atan

4
2 4+ Al tan i - 2B]
o] (o]

(38)

On substituting the appropriate values of the functions of io, and

simplifying

B sec x =

Hence

M sec

| _ _ _ 4
sec? 0[1-A+ (A-E)tan® 6 -2(B -B) + (A - B)% tan" 0

3
1

(A2 - -./—Xz) tan2 °] sec:2 6]

2

-
I

- Z2) tan? 9]

secB[l-é—K- (A

8

sec_ﬂ[l-lf(!

[

E)‘t YL—% p)‘(z -é—'(ﬁ—l)_xztanze]

oo

(39)

The reduction in phase path length from its free space value is then

h(sec 8 - u sec x)

where AP
o

A

R 1 o 1 - . 2
_Z'hX sec 6[1%F YL+Z[3X+Z([3—1)Xtan 0]
P [1TY +L1p8 X+ 1 (B-1)% tan? 0] (40)
o L 4 4
1 -
>h X sec 6 (41)

the first order theory value of phase path reduction.
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5. Discussion

The second-order equatiqns for polarization rotation, (Equation
(36) ), and phase path reduction, (Equation (40) ), are each quadratic
in X, with coefficients involving known parameters of the straight line
from source to receiver and of the magnetic field, and also the parameter
B which may be estimated approximately. Rather than carry through a
full quadratic solution for X, it will probably usually be most convenient
to first find an approximate solution from the first order Equations (37)
and (41) respectively, and iterate once for a second-order solution. It

is then most convenient to invert Equations (36) and (40) to give respectively
1 t
X -5 (B-1)GX ] (42)

where X = - Q

5 _ < 1, <! 1 ' 2

and X-X[l:l:YL-ZBX -Z(B-I)Y tan” 8] (43)
<' 2AP

where X = §sec®

Further iteration is usually not justified in view of the approximate

form of the equations and of their rapid convergence when X is small.

5.1 The Distribution Parameter, B

The parameter = XZ/ }—(2 is a measure of the non-uniformity
with which the ionization is distributed over the height of integration. It
has a minimum value of unity for a completely uniform distribution, with
larger values as the distribution is more concentrated. For a uniform

slab layer occupying a fraction .rlf of the height range, p takes the value of
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n, while for a Chapman layer of the form N = N _ exp —é— [1-2z-e7%]
and for which the height range occupies a fairly large number, h, of
units of z, the value of P is approximately 0.159h. Thus for a satellite
at a height of 1000 kilometers and a typical scale height unit of 67
kilometers, the value of  is approximately 2.5.

In general, for a given experimental geometry, it should be
possible to estimate the value of B a priori to an accuracy of about %
10% .

The terms in the perturbation factors in Equations (42) and (43)
have been left separate because of the way in which they have arisen.
The terms for which B is a factor come directly from the non-linear
dependence of the refractive index p on the electron density which is
proportional to X. The terms having (B - 1) as a factor are due to
ray refraction effects as summarized earlier. For a completely uniform
medium $ = 1 and these terms vanish as would be expected. For cases
where f is very large, as might occur for example when the source is
at a great height, X will usually become small and some alternative form
of the equations may be desirable. We note that

o
1

zdh/‘)Ndh , (44)

so that BX reaches a limiting value for a given ionosphere as the height

range increases beyond the limit of the ionization distribution.

5.2 The Geometrical Parameter G

The parameter G is purely geometrical and involves the relative
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directions of the straight line, the magnetic field and the vertical at the
ionosphere point. Since many of these directions are required in the
computation of the quantity W used in first order analyses,
it is a simple matter to compute G at the same time.

The form of G is interesting also.

From Equation (35)

Y

G = tan 6 [tan 6 - Y—l]
L

As noted earlier the field component normal to the plane of incidence
does not enter the equation. Further, G = 0 at the zenith as would
be expected. More surprising, however, is the disappearance of G
when Yl = YL tan 6, i.e., when the field component in the plane of
incidence is vertical. Under this condition, the second-order effects
of wavenormal refraction and ray-wavenormal separation cancel each
other leaving only the effect of the nonlinearity of the refractive index.
This condition will occur at all latitudes when the plane of incidence
is normal to the magnetic meridian plane, i.e., along directions which
are approximately east and west of the observing station . Of course,
G will be virtually zero everywhere for a station close to the magnetic
pole.

The disappearance of G for some azimuthal directions from the
observing station: has the interesting corollary that in these directions
at least, the first order theory may well be better than one which attempts
a second order analysis by only partially including the second order effects,

for example by integrating the differential refractive index over the no-
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field ray trajectory. A similar situation may arise over a considerable
field of directions for stations at high magnetic latitudes.

Maps of G have been prepared for two stations and are shown as
contour maps in Figures 2 and 3. Figure 2 was compiled for an observing
station at State College, Pennsylvania (40.8 N, 77.9 W), which is a
typical mid-latitude station with a magnetic inclination of 72°. The
contour G = 0 passes through the station normal to the magnetic meridian
as discussed earlier, and G increases fairly uniformly in magnitude away
from this line, positively to the north and negatiyely to the south. Some
concentration of contour lines is seen far to the north,for which direction
the magnetic field is more nearly transverse. The map covers the
most probably useful range of source locations and corresponds to zenith
angles at the ionosphere point of about 65 - 70° near the edges.

Figure 3 shows similar data for Huancayo, Peru (12.05 S,

75.35 W) which is almost on the dip equator. Here the uniform change of
G with latitude comparable to that in Figure 2 takes place near the zero
contour which in turn lies close to the locus of transverse conditions

at the ionosphere point. Elsewhere G is positive and generally increases
with distance from the observing station, with a magnitude comparable

to the values found at mid-latitudes.

5.3 Accuracy of the Second-Order Equations

In order to test the adequacy of the second-order equations for
the reduction of propagation data, comparisons were made with accurate
numerical solutions of the propagation equations using particular ionospheric

models. In all cases the same plane stratified ionization distribution was
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used, and ray paths for each QL mode were calculated by an iterative
procedure similar to that of Lawrence and Posakony (1961) for a
source at a zenith angle of 45°, and for various directions of an
assumed uniform magnetic field. The principal properties of the model
are shown in Figure 4. With Xmax =0.2and B = 2.8, this model is
comparable to a daytime ionosphere under average sunspot conditions
using a 20 mc/s satellite beacon at 1000 km. altitude. The value
Y = 0.08 is also roughly typical of 20 mc/s operation.

The results of the computations for polarization rotation are
shown in Table 1 for six different magnetic field directions which are
indicated by their direction cosines. The percentage errors which

resulted from use of the first order theory and of the second order

equations (Equation (42) ) are tabulated for comparison.

Table 1

Comparison of First-Order and Second-Order Interpretations of
Polarization Rotation in Model Ionospheres. (B = 2.8, X = 0.05,

Y = 0.08). Source at(—— , 0, —— )
N N2
Percentage Error
Model Field i G First Order Second Order
A 0,0,1 0 +8.2 +0.6
B 1,0,0 2 +20.3 +0.9
T C -%,0, N3/2 -2.732 -8.2 -3.5
D 3.0, N3/2 ' 0.732 +13.0 +1.2
E 0, 1/«12,, 1/«) 2 0 +8.1 +0.5
F W3, U3 UNE +14.4 +1.1
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Models A and E are respectively for a vertical field and for a
field whose component in the plane of incidence is vertical. As discussed
earlier these two cases contain similar errors in first order analysis
and are about equally improved by the use of the second order equations.
The 8% error in the fitst order analysis arises almost entirely from
the nonlinearity of the refractive indices for these two models.

Models D and F correspond to rays almost parallel to the field
or its component in the plane of incidence and the errors are again
very similar whether there is transverse field component or not.

Model B, which shows the largest error of the set in first order
analysis, is for a horizontal field, showing the importance of higher
order analysis for low latitude stations where the several refraction
effects are additive.

Model C which shows the least improvement with second order
analysis is for a case where propagation is within 15° of transverse
to the magnetic field. In such cases the procedure of rounding off the
propagation equations to order three does not ensure greatly improved
accuracy because the transverse field component is much larger than
the longitudinal component which appears in the leading term of the
polarization rotation equations.

The considerable improvement in accuracy shown by the second
order analysis in Table 1 may not always be realized in practice. In
some cases shown the improvement is fortuitously high, and also
it must be remembered that the cases considered are for plane stratified

models with a uniform magnetic field, and that the value of B is known
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exactly. Practical use of the equations would involve some uncertainty
in the value of B, while the effects of sphericity and departures from
horizontal stratification might also be expected to degrade the results
to some extent. However, there is no doubt that a substantial improve-
ment in accuracy can, be realized, perhaps of an order of magnitude
for typical cases.

Table 2 shows a tabulation of phase path comparisons made
using the same models as before.

Table 2

Comparison of First-Order and Second-Order Interpretations of
Phase Path Reduction in Model Ionospheres

Upper sign Lower sign
. Y First- Sef:ond»- First- | Second-
Model Field L Order | Order Order Order
A 0,0,1 0.05656856(+0.8% (+0.6% | +13.0%|-0.7%
B 1,0,0 0.05656856(+0.2% (+0.2% | +13.8%-0.1%
C -%-,o, N3/2 0.0207055 |[+4.7% [+0.5% | +8.5% |-0.5%
D %-,o,xf?/z 0.0772741 {-1.5% |+0.6% +16.0% | -0.7%
E 0, YNz, YNZ 0. 0400 +2.4% [+0.5% | +11.0%]-0.5%
F YT, UNE W30, 0653197 |-0.4% [+0.4% | +14.5%|-0.5%

It is seen that the use of the second order equations results in an
accurate value for the phase path reduction in all cases.

Probably the most striking feature of Table 2 is the relatively
high accuracy seen in the first order analysis for the upper sign. This
comes about largely from the accidental similarity between the values

for X (0.05) and YL for the models chosen, and is evidently less
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pronounced when YL differs markedly from 0.05 in value as for example
in Models C and E. The particular value of B also plays an important
role in this result. A much less pronounced disparity in the accuracies
of first order analysis for upper and lower signs would be expected for
example in a nighttime ionospheric model, or for one appropriate to
higher frequencies, for either of which the value of X would be much
smaller than here.

Nevertheless, it is evident from the form of the second order
equation (Equation (43) ), that the second order correction factor will
be less whenever the value of YL is positive.

Thus it will usually be preferable to perform phase path reduction
measurements using the magneto-ionic mode corresponding to the

positive sign for Y , using North into West circular polarization

L’ i.e.
for a mid-latitude station in the Northern hemisphere. In this way the
second order correction factor, which contains some uncertainty through
the parameter B, is minimized and the probable accuracy of the final
result is improved.

With the improved accuracy which results from the use of the
second order equations it might seem desirable to extend the equations
to still higher orders of accuracy. To do so, however, is to introduce
greatly increased complexity into the equations, including more detailed
ionization distribution functions and field geometry parameters, and the
azimuthal deviation effects noted earlier. It must be remembered that

all these equations are derived in terms of a simplified model whose fit

to a real ionosphere is only approximate, so that in practice the accuracy
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of the results is limited. It is proposed that if higher accuracy analyses
are to be made, these are best done by means of a full computer ray
tracing procedure such as that described by Lawrence and Posakony
(1961), which may include such effects as magnetic field variation with
position, departures from horizontal stratification, etc.

In applying the second-order equations, it must be remembered
that they have been derived on the assumption of quasilongitudinal
propagation, and they should be used with increasing caution if the
experimental conditions should approach the limits of this assumption.

An indication of their falling accuracy was seen in Table 1 as more

nearly transverse conditions were approached.
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6. Application to Propagation Experiments

6.1 Polarization Rotation

There are a number of experiments in which the rotation of the
plane of polarization of a radio wave passing through the ionosphere
can be measured unambiguously, and for which the inclusion of the
second order corrections is a straightforward matter through the use
of Equation (42).

For example, measurements between a ground station and an
ascending rocket enables the rotation at any time to be found by
counting from the time of launch. In such an experiment the values
of B, X and G change progressively with time and a modified form
of the equations may be preferable to that given here. For satellite
transmitters the ambiguity may be resolved in cases where the pro-
pagation at some time is transverse to the magnetic field, at which
point the rotation is essentially zero, and from which point the rotation
may be counted e.g., Blumle and Ross (1962). In some experiments
the wave frequency is so high that the total rotation may be small
enough to be unambiguous, e.g., Millman et al (1960). Usually in
such cases, however, the correction given by second order analysis
is so .small as to be insignificant.

Recently, some measurements have been proposed of the
polarization rotation in incoherent backscatter from the ionosphere,
where, as in the rocket case, rotation may be found by counting from
the bottom of the layer. In these experiments also a modified form of

the second order equations may be used to give improved accuracy.
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6.2 Polarization Rotation Rate

In many propagation experiments, particularly those involving
satellite beacon transmitters, it is not possible to measure the
polarization rotation angle directly but only changes in rotation with
time. In these measurements the changes usually result from a
changing experimental geometry rather than from an ionospheric
medium which changes explicitly with time. To interpret such
measurements it is necessary either to assume a stratified medium
or to assume some form of its variation along the locus of the
ionospheric point.

If the horizontal variation of the ionosphere can be included
adequately in a first order theory, then it will be worthwhile to
consider including the second order refraction corrections as an
additional refinement. It will usually be most convenient to do so by
converting the time dependence of the rotation angle to a position
dependence, so that the appropriate value of the parameter G may be
associated with each point on the record. The second order equations
will be slightly in error if the ionosphere is not horizontally stratified,
but this effect is expected to be small and will be neglected here.

Denoting satellite positions by letter subscripts we have from

Equation (36)

_ 1 < 1
Q = Q [1+2-pai X, + 3

(B, - 1) G, X, ] (46)
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. - _ 1 _ [
LA = -szj = (2, -QJ.O) @ X, LB, + (B; - 1) Gi]

1 -

Z Yo XJ- [ﬁJ + (ﬁJ 1) Gj] (47)

The second-order correction to the differential rotation angle
in Equation (47) will usually be fairly small and may be calculated if
values derived from first order theory are inserted and the presumed
known form of the horizontal variation of electron content is included.

The measured differential rotation angle may then be corrected
to an equivalent value suitable for first order analysis. If we suppose

that -Xj =a}_(.1 then

- = X -aY¥Y. .
Qio Qjo KXi [YLi sec Gi Qt. LJsec GJ.] (48)

whencé"}—(l may be found.

Inspection of the field mapfor G for a mid-latitude station
(Figure 2) shows that since G changes uniformly from north to south
the second order correction factor varies similarly, so that first
order analysis of polarization data from a source which moves across
the field of view will indicate the presence of a spurious gradient in
electron content. Similarly the use of first order equations in
polarization rotation rate experiments will lead to values of electron
content which are too high for a north-going satellite source, and too
low for a south-going source, even for a horizontally stratified ionosphere.
A decrease in electron content from south to north will, of course,

produce a similar effect in the rotation rate experiment.
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6.3 Close-Spaced Frequency Polarization Rotation Dispersion

One way in which the ambiguity in polarization rotation angle
can be resolved, is by the simultaneous use of two closely -spaced
frequencies between which the differential rotation angle is unambiguously
small. This technique has been used in moon echo experiments, e.g.,
Evans (1957),and is proposed for some satellite beacon experiments,
notably S=66 and OGO-A.

On first order theory, (Equation (1) ) the rotation angle varies
inversely as the square of the frequency so that a measured dispersion

is readily transformed into a total rotation angle.

For if
Q o< 1—
f2
a2 _ df
= 2 = (49)

When second-order effects are included, however, it is seen that the
rotation angle no longer follows a simple inverse frequency squared
law but contains terms in )_(2 which vary as the inverse fourth power
of frequency and whose dispersion is greater than that of the leading
term.

[}

oo If

@ =AX[1+5 pX+ 7 (B-1)G X ] (50)

then

e _ dX
d_f__A—dT-[1+ﬁX+([3—l)GX] (51)
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Lda = -2X %[1+ﬁ)_<+([3-1)(}>_<] (52)

Thus the second order correction terms in the rotation dispersion
are twice as great as for the polarization rotation itself, and the inclusion
of this correction is correspondingly more important.

The proposed polarization dispersion experiments using satellite
transmitters will use frequencies of 40 mc/s and 41 mc/s. Adapting
the first order analyses of Table 1 to a realistic daytime ionospheric
model in this frequency range will reduce the errors in first order
analysis shown in the Table by a factor of four approximately. Thus
the use of first order equations for reducing the 40-41 mc/s differential
polarization data may be expected to lead to errors ranging from 4% to

10% for the models in this Table.

6.4 Wide-Spaced Frequency Polarization Rotation Dispersion

One polarization rotation experiment of particular interest is
that involving the relative rotation rates at wide-spaced frequencies,
usually in harmonic ratio. Using first order theory one would expect
that the rotation angles and rotation rates would be in the inverse
ratio of the squared frequencies. Departures from this value may be
used to infer some properties of the ionosphere. Yeh (1960) has
considered this effect, although his analysis did not include the
second-order refractive effects fully.

For wave frequencies f1 and n fl the respective rotation angles
are

1

Q. = Q [1+—5Xl+

) 01 5 B-1GX, ] (53)

1
Z
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1

- 1 %
and Q@ = Qg [1+-2-pxn+-2-(ﬁ_1)GXn]
-1 o 1+-1 8% + L- B-1GZX ]
7~ % oz PA T o B ]
n n 2n
(54)
. 4 _ 2
Jonto2 -9 = (n" -1)Qy,
, - n4Q -Ql
..901:__’1— (55)
2
n -1

Thus a value for QOI and hence for )_(1 may be found without the need
for an estimate of the value of B or of G.

Also from Equations (53) or (54) we may calculate the value of
B by substituting the value of 901 from Equation (55) and the value of
G for the particular position.

As indicated in Section 6.2, the polarization rotation angle
is often not known explicitly but only its changes can be measured.
In this case we may follow a similar procedure by evaluating Equation

(47) for each of the two frequencies and combine them, whence

4 _ 2
n AQn—Aﬂl = (n —1)A§201 (56)

Thus a differential rotation angle AQOl which would be produced
if propagation followed first order theory, may be found from the
measured differential rotation angles Aﬂl and AQn, without the necessity
for assuming any particular horizontal dependence of the ionosphere.
The interpretation of this differential angle, however, using Equation

(48),will require the assumption of this dependence.
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6.5 Phase Path Dispersion and Doppler Dispersion

Since the phase path reduction cannot usually be measured
directly, comparison methods become essential for the interpretation
of experimental data. The normal observation is of the Doppler
frequency shift which is proportional to the rate of change of phase
path with time. This can be converted to a corresponding rate of
change of phase path reduction if the free space Doppler effect can
be removed, for instance by accurate knowledge of the experimental
geometry, or more commonly by harmonic frequency dispersion
measurements.

The ionospheric contribution to the Doppler frequency shift
may be found by differentiating Equation (40) with respect to time.
Assuming a horizontally stratified ionosphere, this leads to an

ionospheric Doppler shift of

1 d _ 1 3 o 2
Afy = + g (AP) = AfDO[1+Z X+ 7(B-1)X sec 8]
— 1 hX d
+ > ~ 4 (YL sec 8) (57)

where AfDO is the ionospheric Doppler shift calculated by first order
theory.

The last term is simply one half the rate of occurrence of
polarization fades given by first-order theory, and has been shown
by Bowhill (1958) to be constant for the case of a satellite source
moving horizontally with respect to a plane stratified ionosphere with

a uniform magnetic field.
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Differentiating Equation (57) again and evaluating the result

when the zenith angle is a minimum we find

d _ 4 1o . 3 v 2
qw Bfp) = g (Afpg) [+ g X+ 3 (B -1 X sectO
min
(58)
: _ AP 1o 3 < 3 2
Lo X=82 no2x-3-10X-32(p- X tando__ ]
(59)

which is closely similar to the semi-empirical equation used by

Ross (1960) to correct first order theory for the effects of refraction.

A discussion of the effects of a non-stratified ionosphere on
these equations will not be entered into here.

As was the case with the polarization rotation effect (Section
6.3) the use of closely spaced frequencies may be used to provide an
instantaneous comparison measurement, rather than using the time
dependence of phase path with its attendant assumptions of the
horizontal distribution of ionization, e.g., Eshleman et al (1960).
These experiments are equivalent to finding the group. delay in the
composite signal from the phase dispersion. From Equation (40)

the ionospheric contribution to the group delay, T, is given by

- d AP - —_— 3 3 2
S i s [1+2YL+Z BX + Z(B-I)Xtan 0]
(60)
where T = 3 (._AP.__O_) .1 hX sech
o T ) = 3

]
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Hence X may be found by inversion of Equation (60)

It is important to note the increased magnitude of the second-
order correction factor, compared with its value in the original phase
path formulae. The magnetic field effect has been doubled while the
refraction term and non-linear index term are each tripled in importance,
so that, referring to the test computations in Table 2, it is seen that
the first order analysis may be in serious error. Using the same model
parameters as in Table 2 the following Table results.

Table 3

Errors Arising From use of First-Order Analysis of Phase Dispersion
in Close Spaced Frequencies for Several Test Models (X = 0.05, g = 2. 8)

Model Upper Sign Lower Sign
A +5.9% +28.6%
B +5.9% +28.6%
C +13.1% +21.4%
D +1.8% +32.7%
E +9.3% +25.3%
F +4.2% +30.3% :

Although experiments of this sort would probably not be per-
formed using such a low operating frequency as these data represent,
nevertheless the errors are such as to merit serious attention even

for much higher frequencies.

6.6 Hybrid Faraday-Doppler Experiments

It has been shown by de Mendonca and Garriott (1962) that
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by the use of simultaneous measuremements of Doppler dispersion and
polarization rotation, the electron content of the ionosphere can

be determined without the assumption of a particular form of the
horizontal distribution of ionization. This method was based on

the first order propagation equations for each effect.

The extension of de Mendonca's formulae to include the
second order effects discussed here leads to a very cumbersome
formulation and will not be made here. The most straightforward
procedure for the inclusion of these effects appears to be to make
the first order analysis of the data to arrive at approximate values
for the total polarization and phase path reduction, to correct these
initial values to equivalent first order values by the methods outlined

here, and iterate the solution to arrive at improved values.

6.7 Experiments Using Distant Sources

When the source is at a very great height, some simplification
of the basic second order equations (Equations (36) and (40) ) becomes
possible. As was shown in Section 5.1, under these conditions

becomes very large, so that we may write for Equation (36)
- 1
sz-czo[1+z BX (G+ 1) ] (61)

and for Equation (40)

AP = aP_ [1 F Y o+ BX sec® 6] (62)

It should be pointed out, however, that in such experiments,
if the ionization is distributed in appreciable amounts over a substantial

part of the height range, the equati‘ons of this paper must be used with
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caution, because (1) the assumption of a uniform field becomes less
realistic and (2) the use of plane stratification of ionization does not
give a good representation for the higher ionization.

Within these limitations, however, the above Equations (61)
and (62) may still be expected to give improved results over those
of the first-order theory for moon radar and distant satellite beacon

experiments using either Doppler or polarization rotation effects.
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7. Summary and Conclusions

Methods have been developed for the analytical determination
of the effects of refraction and nonlinearity of the refractive index
for a quasilongitudinal magneto-ionic medium through which high
frequency radio waves are propagated. The results are still
approximate, but they extend the accuracy of the commonly used
first order analysis methods by about an order of magnitude.

It has been shown that it is possible to estimate some of the
second-order coefficients approximately from a priori knowledge of
the general form of the ionization distribution, while others can
be calculated very simply from the known experimental geometry.

In all cases emphasis has been placed on casting the equations in an
analytical form suitable for manual data reduction, avoiding the need
for computer ray-tracing programs which have characterized earlier
inclusion of these effects. As a consequence it is possible to determine
by inspection the effects of each of the several parameters which enter
the equations, and to assess in advance the sensitivity of the result to
the tolerances in these parameters. Some general conclusions
concerning the choice of magneto-ionic mode in doppler studies and

the geomagnetic dependence of the second-order polarization effects,
for example, have been drawn from the equations.

Studies have been made of the effect of the more accurate
equations in the analysis of data from a number of types of propagation
experiments. In some cases, notably those involving dispersion in the
propagation effects, these studies have indicated that surprisingly

large errors may result from the use of the simple first order analysis
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methods.

It is strongly urged that, when magnetic field maps are computed
for first order polarization rotation analysis, the second-order
parameter G be computed as well so that the analysis may be upgraded

by means of the second-order equations.
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